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Abstract
The spin transfer effect in a ferromagnet–quantum dot (insulator)–ferromagnet
Aharonov–Bohm (AB) ring system with Rashba spin–orbit (SO) interactions is investigated by
means of the Keldysh nonequilibrium Green function method. It is found that both the
magnitude and direction of the spin transfer torque (STT) acting on the right ferromagnet
electrode can be effectively controlled by changing the magnetic flux threading the AB ring or
the gate voltage on the quantum dot. The STT can be greatly augmented by matching a proper
magnetic flux and an SO interaction at a cost of low electrical current. The STT, electrical
current and spin current are uncovered to oscillate with the magnetic flux. The present results
are expected to be useful for information storage in nanospintronics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spin transfer effect (STE) states that, when the spin-
polarized electrons flow from one ferromagnet (FM) layer
into another FM layer with magnetization aligned at a relative
angle, they may transfer transverse spin angular momenta to
the local spins of the second FM layer, thereby exerting a
torque on the magnetic moments that is usually termed as the
spin transfer torque (STT). This important phenomenon was
predicted independently by Berger and Slonczewski [1, 2] in
1996 and soon confirmed by experiments. Because the STE
can be utilized to switch the magnetic state of the free FM
layer in a magnetic tunneling junction (MTJ) or a spin valve
by applying an electrical current instead of a magnetic field,
it may be even more useful in writing heads for magnetic
random access memory (MRAM) or hard disk drives than
the conventional tunnel magnetoresistance (TMR) and giant

3 Author to whom any correspondence should be addressed.

magnetoresistance (GMR) effects. In view of the potentially
wide applications in nanospintronic devices, a number of
works on the STE have been done for different systems both
theoretically and experimentally [3–16].

On the other hand, the quantum dot (QD) has received
much attention in the past decades, and a lot of advances
have been made in this particular field (e.g. [17–21]). For
a semiconductor QD, as the spin–orbit (SO) interaction is
usually not negligible, some interesting phenomena related
to the SO interactions, such as the bias-controllable intrinsic
spin polarization in a QD [22] and the interplay of Fano and
Rashba effects [23], can be observed. Almost twenty years
ago, Datta and Das predicted a spin transistor based on the
Rashba SO [24], showing that the SO interactions may be
important in semiconductor spintronics. However, the effect
of the Rashba SO interaction on the STE is still sparsely
studied. In this paper, we shall take the FM–QD (insulator,
I)–FM Aharonov–Bohm (AB) ring system as an example to
investigate how both the SO interaction and the magnetic flux
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affect the spin-dependent properties of the system by means of
the nonequilibrium Green function method. We have found
that the magnitude and direction of the STT can be easily
controlled by changing the gate voltage Vg on the QD or the
magnetic flux φ through the ring if both the SO and electron–
electron (e–e) interactions in the QD are considered, which
might be useful in information storage.

The other parts of this paper are organized as follows.
In section 2, a model is proposed, and the relevant Green
functions are obtained in terms of the nonequilibrium Green
function method. In section 3, the spin-dependent properties of
STT in the system under interest are numerically investigated
and some discussions are presented. Finally, a brief summary
is given in section 4.

2. Model and method

The system of interest is depicted in figure 1. Two FM leads
spreading along the z axis are weakly coupled to an insulating
(I) barrier and a semiconducting QD, forming an AB ring.
The left (L) FM electrode with the magnetization along the
z axis is applied by a bias voltage −V/2, while the right (R)
electrode with the magnetization along the z ′ axis that deviates
by an angle θ from the z axis is applied by a bias voltage V/2.
Assume that the QD is made of a two-dimensional electron gas
in which the electrons are strongly confined in the y direction
by a potential V (y). Due to dV/dy � dV/dx and dV/dz, we
have ∇V (�y) ≈ ŷ(dV/dy), where ŷ is the unit vector along
the y axis. If V (y) is asymmetric to y = 0, both Rashba SO
and e–e interactions on the QD should be considered. Since
the electronic transport of the device along the z axis is much
more dominant than that along the other two dimensions, the
device of interest can be treated as a quasi-one-dimensional
system. Sun et al [25] have carefully analyzed the SO Rashba
interaction and found that (i) the Rashba SO interaction can be
separated into two parts, HR1 and HR2 , namely

Hso = ŷ

2h̄
· [α(x)(σ̂ × p̂)+ (σ̂ × p̂)α(x)] = HR1 + HR2, (1)

HR1 = 1

2h̄
[α(x)σz px + σz pxα(x)], (2)

HR2 = −α(x)σx pz

h̄
; (3)

(ii) by choosing a suitable unitary transformation, HR1 can give
rise to a spin-dependent phase factor in the tunneling matrix
element between the leads and the QD, while equation (3) can
be written in the second-quantization form as [25]: HR2 =∑

mn(t
so
mnd†

m↓dn↑ + h.c.), which causes a spin-flip term with
strength t so

mn in the QD, where m and n are quantum numbers
for the eigenstates of electrons in QD; and (iii) since the time-
reversal invariance is maintained by the Rashba SO interaction,
t so
mn = −t so

nm and t so
nn = 0, which suggests that the spin-flip

scatterings only occur between different levels in the QD. In
the present work, for simplicity, we shall consider the case
with a single-level QD as in some previous works [23, 25],
where no interlevel spin-flip scattering happens in the QD.
Thus, HR2 equals zero. Suppose that α(x) is independent of

Figure 1. A schematic layout of the FM–QD(I)–FM AB ring system.
The electrons flow towards the x axis.

the coordinates in the scattering region and a magnetic flux
penetrates into the AB ring. The Hamiltonian of the present
system is given by

H = HQD + Hβ + HT , (4)

HQD =
∑

σ

εdd†
σ dσ + Un↑n↓, (5)

Hβ =
∑

βk,σ

εβkσ a†
βkσ aβkσ , (6)

HT =
∑

k,σ

[

tRd

(

cos
θβ

2
a†

Rkσ − σ sin
θβ

2
a†

Rkσ

)

× e−iσγ eiφdσ + h.c.

]

+
∑

k,σ

[
tLda†

Lkσ dσ + h.c.
]

+
∑

k,σ

[

tLR

(

cos
θβ

2
a†

Rkσ − σ sin
θβ

2
a†

Rkσ

)

aLkσ +h.c.

]

,

(7)

where aβkσ and dσ are annihilation operators of electrons with
momentum k and spin σ (=↑,↓) in the β (=L, R) electrode
and in the QD, respectively, εβkσ = εk + σ Mβ − eVβ is the
single-electron energy for the wavevector k with the molecular
field Mβ in the electrode β , εd is the single-electron energy in
the QD, U represents the on-site Coulomb interaction between
electrons in the QD, tβd is the tunneling matrix element of
electrons between the β electrode and the QD, tLR is the
tunneling matrix element of electrons between the L and R
electrodes through the insulating barrier, nσ = c†

σ cσ , γ = kRd
with kR ≡ αm∗/h̄2, α = 〈	(y)|(d/dy)V (y)|	(y)〉, m∗
the effective mass of electrons and d the thickness of the
middle region. The magnetic flux 
 threading the AB ring
is related to the phase factor by φ = 2π
/
0, where 
0 is
the flux quantum. It should be noted that the magnetic flux
threading the AB ring generally includes two contributions,
one generated by the FM leads that may be small and constant,
and the other from the external magnetic field that can be varied
to adjust the phase factor φ.

The transverse component of the total spin in the right FM
lead can be written as [3]

S = h̄

2

∑

k

(a†
Rk↑, a†

Rk↓)σ̂x

(
aRk↑
aRk↓

)

= h̄

2

∑

k

(a†
Rk↑aRk↓ + a†

Rk↓aRk↑), (8)

where S is written in the x ′y ′z′ coordinate frame. The
spin torque, namely the time evolution rate of the transverse
component of the total spin of the right FM lead, can be
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obtained by ∂S/∂ t = i
h̄ 〈[H, S]〉. According to [3, 26, 27], the

right FM layer gains two types of torque: one is the equilibrium
torque caused by the spin-dependent potential and another is
from the tunneling of electrons, which is what we are interested
in. After cautiously separating the current-induced torque from
the equilibrium one, the STT is given by

τ = −e

{

tRd eiγ eiφ cos
θ

2
G<

d↓R↑(t, t)

− tRd e−iγ eiφ sin
θ

2
G<

d↑R↑(t, t)

+ tRL cos
θ

2
G<

L↓R↑(t, t) − tRL sin
θ

2
G<

L↑R↑(t, t)

+ tRd e−iγ eiφ cos
θ

2
G<

d↑R↓(t, t)

+ tRd eiγ eiφ sin
θ

2
G<

d↓R↓(t, t)

+ tRL cos
θ

2
G<

L↑R↓(t, t) + tRL sin
θ

2
G<

L↓R↓(t, t)

}

. (9)

From equation (9), it is clear that the current-induced
STT can be obtained as long as we get the lesser Green
functions G<. In what follows we shall use Keldysh’s
nonequilibrium Green function technique to determine all
lesser Green functions [28]. These functions are closely related
to the retarded Green functions defined by

Gr
βσγσ ′(t, t ′) = −iθ(t − t ′)

〈{
∑

k′
aβk′

σ (t),
∑

k

a†
γ kσ ′(t ′)

}〉

,

Gr
βσdσ ′(t, t ′) = −iθ(t − t ′)

〈{
∑

k

aβkσ (t), d†
σ ′(t ′)

}〉

,

Gr
dσ dσ ′(t, t ′) = −iθ(t − t ′)

〈{
dσ (t), d†

σ ′(t ′)
}〉

,

where {A, B} denotes the anticommutation relations and 〈A〉
stands for the thermal average. By using the equation of
motion, the retarded Green functions can be obtained by the
Dyson equation Gr = gr + gr�rGr, where gr is the retarded
Green function for decoupled systems and �r is the self-energy
of electrons. To obtain Gr, the decoupling approximations
similar to those in [5, 28, 31] for the equations of motion of
Green functions should be made. As the associated equations
for Green functions are quite lengthy, we shall not repeat them
here for conciseness.

The lesser Green function G< can be calculated
straightforwardly from the Keldysh equation

G< = (1 + Gr�r)g<(1 + �a Ga) + Gr�<Ga

= Grgr−1g<ga−1Ga + Gr�<Ga . (10)

In the present case, �< = 0, and gr−1g<ga−1 is diagonal:

gr−1g<ga−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2i fL(ε)/πρL↑
2i fL(ε)/πρL↓

2i fR(ε)/πρR↑
2i fR(ε)/πρR↓

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(11)

The electrical current is given by

I = I↑ + I↓, (12)

I↑ = −e

{

tRd e−iγ eiφ cos
θ

2
G<

d↑R↑(t, t)

+ tRd eiγ eiφ sin
θ

2
G<

d↓R↑(t, t)

+ tRL cos
θ

2
G<

L↑R↑(t, t) + tRL sin
θ

2
G<

L↓R↑(t, t)
}

, (13)

I↓ = −e

{

tRd eiγ eiφ cos
θ

2
G<

d↓R↓(t, t)

− tRd e−iγ eiφ sin
θ

2
G<

d↑R↓(t, t)

+ tRL cos
θ

2
G<

L↓R↓(t, t) − tRL sin
θ

2
G<

L↑R↓(t, t)
}

. (14)

The spin current is defined by a difference between the
electrical currents of spin up and down:

Is = I↑ − I↓. (15)

To get the physical quantities of interest, the above-mentioned
equations will be solved numerically in a self-consistent
manner.

3. Results and discussions

It has been shown that, when the incident electrical current is
larger than a critical value, the STT can switch the direction
of the magnetization of the free FM layer clockwise or
anticlockwise, depending on the direction of the incident
electrical current [29–31]. In the present case, the positive
STT tends to push the spins in the right FM electrode aligning
antiparallel with the magnetization of the left FM electrode,
while the negative STT may cause a reverse orientation of
the magnetization in the free FM layer. In order to properly
incorporate the STE into a functionalized spintronic device,
both the direction and magnitude of the STT should be taken
into account. For simplicity, in the following parts we will
assume that in most cases the left and right FM electrodes have
the same spin polarization PL = PR = P = 0.5, and the angle
θ between the z and z ′ axes is π/3 throughout the paper unless
specified. We take I0 = e�0

h̄ and �0 = �L(R)↑(P = 0) =
�L(R)↓(P = 0) as scales for the electrical and spin currents
as well as the STT and energy, respectively, where �ασ (ε) =
2π

∑
kα

|tαd |2δ(ε − εkα
). In accordance with [32–34], we

assume that the Rashba SO interaction constant is α ∼ 3 ×
10−11 eV m, kR = m∗α/h̄2 ≈ 0.015 nm−1 for m∗ = 0.036me,
the typical length of QD is 100 nm, U = 5�0 and γ can be
π/2 or larger.

As the STE only exists in the noncollinear case, in contrast
to previous works where the electrical and spin currents were
discussed only in collinear cases (θ = 0 or π ) (e.g. [23, 25]),
let us first look at the angular dependences of the STT, the
electrical current and spin current for different magnetic flux
φ and Rashba SO interaction γ . The results are given in
figure 2, where γ = π/2 and εd = 1 in figures 2(a)–
(c), and φ = π/2 and εd = 1 in figures 2(d)–(f). It can
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Figure 2. The θ dependence of (a) the spin transfer torque τ , (b) the
electrical current I and (c) the spin current Is for different magnetic
flux φ. The θ dependence of (d) the spin transfer torque τ , (e) the
electrical current I and (f) the spin current Is for different Rashba SO
interaction γ .

be observed that the STT has a sine-like relationship with
the relative angle θ , and the direction and magnitude of the
STT are clearly influenced by both the magnetic flux φ and
Rashba SO interaction γ . In the absence of either φ or γ , the
STT remains negative (anticlockwise). For the simultaneous
presence of φ and γ (greater than π/4), the STT becomes
positive (clockwise). This fact reminds us that we may apply
the magnetic flux to change the direction of the STT, thereby
being capable of manipulating the magnetic state of the free
FM layer, which might be useful for information storage and
for designing the memory element. The electrical current I
decreases with increasing θ in the absence of either φ or γ ,
indicating a spin-valve effect, while it increases with θ in the
presence of both φ and γ (greater than π/4), giving an anti-
spin-valve effect (e.g. φ or γ = π/2 in figures 2(b) and (e)).
This property differs obviously from the conventional FM–
I–FM or FM–QD–FM systems without considering the SO
interactions where the electrical current always decreases with
increasing θ . The spin current shows a feature similar to the
electrical current. From these calculated results presented in
figure 2, we can find that, for a given Rashba SO interaction
γ (magnetic flux φ), the angular-dependent STT, electrical
current and spin current exhibit distinct behaviors for different
values of the magnetic flux (Rashba SO interaction).

Figure 3 shows the magnetic flux φ dependence of the
STT, electrical current and spin current for different Rashba
SO interactions. We can see that, with increasing φ, the
STT, electrical current and spin current oscillate differently
for various Rashba SO interactions γ . The larger the SO
interaction γ is, the more complex the oscillations are. For
the QD energy level εd = −1 and γ = π/2, the STT shows
a maximum around φ = 3π/2, while the electrical current
exhibits minima around the same φ. Therefore, we may be
able to use a lower current to change the magnetic state of the
free FM by adjusting the magnetic flux penetrating into the AB
ring. It is favorable for the spintronic devices, because a larger

Figure 3. The magnetic flux dependence of (a) spin transfer torque
τ , (b) electrical current I and (c) spin current Is for different Rashba
SO interaction γ , where εd = −1, and θ = π/3.

current may cause more heating, while the heating should be
reduced as small as possible for better functions of the device.
In addition, it can be found that the STT is closely related to
the spin current, as the dips and peaks of figures 3(a) and (c)
appear almost at the same positions.

The energy level εd of electrons in the QD, which offers
resonant tunneling channels for spin-polarized electrons from
the left FM electrode to the right FM one, also has effects on
the magnetic flux φ dependence of the STT, electrical current
and spin current. The results are presented in figure 4 for
γ = π/2. It is disclosed that, for different εd , τ , I and Is

exhibit different features and oscillate with φ in general. When
εd = 0, τ , I and Is are mirror symmetrical to φ = π , and
τ is always negative. For positive and negative εd , τ and Is

just have opposite properties: the peaks at φ = π/2 (dips at
φ = 3π/2) for εd = 1 correspond to the dips (peaks) for
εd = −1 at the same φ, but the curves for positive and negative
εd intersect at φ = π , as shown in figures 4(a) and (c). It hints
that, by changing the gate voltage that is usually utilized to
alter the energy levels εd in the QD, one can adjust the STT.
For example, when φ = π/2, if we change εd from −1 to 1,
the STT changes from 0.06 anticlockwise to 0.075 clockwise.
As the gate voltage is easier than the magnetic flux to control,
the present observation may offer a useful way to manipulate
the magnetic state of the free FM layer. The electrical current
also displays quite different oscillating behaviors for εd = 1
and −1, which is shown in figure 4(b).

Why can the STT be controlled by changing the magnetic
flux and gate voltage? Because the transmission probability
of the spin-up electrons is proportional to cos(θ + φ + γ )

and that of spin-down electrons is proportional to cos(θ +
φ − γ ) [25]. The spin-up and spin-down electrons have
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Figure 4. The magnetic flux dependence of (a) the spin transfer
torque τ , (b) the electrical current I and (c) the spin current Is for
different energy levels εd , where θ = π/3, and γ = π/2.

different transmission probabilities if γ is nonzero, leading to
oscillations of the STT with magnetic flux φ. On the other
hand, the STT is intimately related to the electrical current
I [5], and the magnitude of I depends on the energy level εd

of QD, so it is reasonable that the STT can be manipulated by
adjusting the gate voltage. I↑ and I↓ give rise to opposite STT
on the right FM layer. Since I↑ and I↓ oscillate for various
combinations of φ and γ in different ways, the STT may reach
the maximum while I is in its minimum when φ and γ take
certain values.

In addition, the spin polarization PL,R of the FM electrodes
also has effects on the magnetic flux dependence of the STT,
as shown in figure 5. Generally, with increasing PL,R, the STT
shows qualitatively similar behaviors for positive and negative
εd . When PL = PR = P , as shown in figures 5(a) and (b), the
larger the polarization P , the smaller the peaks of the STT. For
different P , τ has obvious changes when 0 < φ < 3π/2 for
εd = 1, and when π/2 < φ < π for εd = −1. When PR and
PL are different, e.g. PR = 0.5 and PL = 0, 0.3, 0.7, the larger
PL is, the more downward the curves move, as indicated in
figures 5(c) and (d). It is interesting that even the left electrode
becomes spin-unpolarized (PL = 0). The STT as a function of
φ still behaves as a sine-like curve and remains almost intact
for different spin polarizations PR (figures 5(e) and (f)). The
existence of the STT at PL = 0 demonstrates that, even if the
left electrode is a normal metal (NM), the unpolarized electrons
from the left NM lead flowing into the AB ring system with
an QD encompassed by a magnetic flux φ can become spin-
polarized before entering into the right FM electrode. It is
seen because, owing to the Rashba effect, the spin-up and spin-
down electrons pass through the AB ring system at different

Figure 5. The magnetic flux dependence of the spin transfer torque
for different spin polarizations at θ = π/3, and γ = π/2.

transmission probabilities, as discussed above. When these
spin-polarized electrons flow into the right FM layer, they may
transfer some spin angular momenta to the local spins of the
right FM electrode, thereby giving rise to the STT. In this case,
if φ = 0, the STT becomes negligibly small. In the above
analysis, we have presumed that the spin relaxation time of
electrons is greater than that of the tunneling time. Thus, to
ensure the feasibility of experimental observation, one must
choose proper materials as FM electrodes and QD, and design
a viable ring system to meet with the above requirements. It
is interesting to note that a similar mesoscopic ring system
was proposed, where some material parameters were discussed
for possible experimental implementation [35] that may be
insightful for choosing proper materials for designing the
present ring system.

The effect of Rashba SO interaction γ on the STT,
electrical current and spin current is shown in figure 6 for
different magnetic flux φ. With increasing γ , when φ = 0,

the STT is always negative and goes down non-monotonically.
When φ = π/4 or π/2, τ goes up from negative to
positive, reaches a maximum, and then decreases, as depicted
in figure 6(a). This result implies that the STT can be
enhanced remarkably by matching φ with proper γ . The γ

dependences of the electrical current and spin current show
different behaviors for various φ, as presented in figures 6(b)
and (c). With increasing γ , for φ = 0, both I and Is increase;
for φ = π/4, I first decreases to a minimum, and then goes up,
while Is decays slowly; for φ = π/2, the situation becomes the
reverse, i.e., I decreases dramatically, while Is first declines
and then rises. In a word, the Rashba SO interactions have
various effects on the STT, electrical current and spin current.

Finally, the bias voltage dependences of the STT, electrical
current and spin current are studied for different γ and φ, as
shown in figure 7. In the simultaneous presence of γ and φ,
e.g. γ = φ = π/2, with increasing voltage, the STT first
increases almost linearly, reaches a peak and then decreases
slowly. After reaching zero, it starts to increase again in a
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Figure 6. The Rashba SO interaction γ dependence of (a) the spin
transfer torque τ , (b) the electrical current I and (c) the spin current
Is for different magnetic flux φ, where θ = π/3, and εd = 1.

different direction. In the absence of either γ or φ or both, τ is
negative and decreases non-monotonically with increasing bias
voltage, as indicated in figure 7(a). For various combinations
of γ and φ, the electrical current I exhibits qualitatively similar
behaviors, which increase overall in a non-ohmic way with
increasing bias (figure 7(b)). For γ = φ, Is remains almost
constant at a small bias. When the bias passes a threshold,
it increases linearly with the increase of V . For γ �= φ,
Is grows up almost linearly despite the small shoulders at
a low bias, as displayed in figure 7(c). From figures 7(a)–
(c), we can see that the shoulder structure of the STT and
the threshold of the spin current appear around eV = 2εd ,
where the resonant tunneling happens. It is not surprising that
the resonant tunneling has influences on the spin-dependent
transport of the system. However, it is more important when
γ = φ, while it is negligible when γ �= φ.

4. Summary

By means of the Keldysh nonequilibrium Green function
method, we have investigated the STE in the FM–QD(I)–FM
ring system with Rashba SO interactions. It has been found
that both the direction and magnitude of the STT are affected
by the magnetic flux and the Rashba SO interactions. When
the SO interaction is strong enough, the STT acting on the
spins of the right FM electrode can be remarkably enhanced by
matching the magnetic flux through the AB ring, which makes
it possible to readily manipulate the magnetic state of the free
FM layer at a cost of lower electrical current. This property is
quite expected for nanospintronic devices where the excessive

Figure 7. The bias voltage dependence of (a) the spin transfer torque
τ , (b) the electrical current I and (c) the spin current Is for different
γ and φ.

heating generated by the electrical current should be avoided as
much as possible. It has also been uncovered that, by adjusting
the gate voltage acting on the QD, both the magnitude and the
direction of the STT can be changed, which gives an alternative
way to manipulate the magnetic state of the free FM layer. In
addition, it is interesting to observe that the STT can also be
increased by the magnetic flux through the ring or the gate
voltage on the QD even if the left FM lead is changed to an
NM.

We would like to mention that the results presented in
this paper provide useful information for designing practical
spintronic devices based on the STE. Such a ring layout can be
used either as a memory element with a low driving current or
as a magnetometer to measure weak magnetic fields, because
the tunnel current depends sensitively on the magnetic flux
threading the ring. On the other hand, the tunnel current or
the magnetic state of the free FM layer are affected by the
Rashba SO interaction, and one may inversely be enabled to
estimate the magnitude of the Rashba SO interaction on the
QD by means of such a ring apparatus. We expect that the
present theoretical findings could be tested experimentally in
future.
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